
Design and Analysis of Algorithm
Series Summation and Recurrence Relation

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

1 / 97

Outline

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

2 / 97

Mathematics of Algorithm Complexity

Algorithm typically consists of loop and iteration structure
complexity ; series summation

Method of calculating series summation
general term formula ; exact result
estimate the upper bound of summation ; approximate result

Algorithm may consist of recursive structure
complexity ; recurrence relation

Methods of solving recurrence relation
recurrence relation is simple: direct iteration + substitution
iteration
recurrence relation is complex: simplification + recursion tree
general case: master theorem

3 / 97

Concepts of Sequences and Series

Sequence: an ordered list of numbers; the numbers in this ordered
list are called the “terms” of the sequence.

Series: the sum all the terms of a sequence; the resulting value, are
called the “sum” or the “summation”.

Example. 1, 2, 3, 4 is a sequence, with terms “1”, “2”, “3”, “4”;
the corresponding series is the sum “1 + 2 + 3 + 4”, and the value
of the series is 10.

Next, we first recall three classical sequences.

4 / 97

Concepts of Sequences and Series

Sequence: an ordered list of numbers; the numbers in this ordered
list are called the “terms” of the sequence.

Series: the sum all the terms of a sequence; the resulting value, are
called the “sum” or the “summation”.

Example. 1, 2, 3, 4 is a sequence, with terms “1”, “2”, “3”, “4”;
the corresponding series is the sum “1 + 2 + 3 + 4”, and the value
of the series is 10.

Next, we first recall three classical sequences.

4 / 97

Concepts of Sequences and Series

Sequence: an ordered list of numbers; the numbers in this ordered
list are called the “terms” of the sequence.

Series: the sum all the terms of a sequence; the resulting value, are
called the “sum” or the “summation”.

Example. 1, 2, 3, 4 is a sequence, with terms “1”, “2”, “3”, “4”;
the corresponding series is the sum “1 + 2 + 3 + 4”, and the value
of the series is 10.

Next, we first recall three classical sequences.

4 / 97

Arithmetic Sequence

Arithmetic Sequence

a, a+ d, . . . , a+ (n− 1)d

ai = a+ (i− 1)d

common difference = d ̸= 0

Arithmetic Series

S(n) =

n∑
i=1

ai =
n(a1 + an)

2
=

n(2a+ (n− 1)d)

2

5 / 97

Geometric Sequence

Geometric Sequence

a, ar, . . . , arn−1

ai = ari−1

common ratio = r ̸= 1

Geometric Series

S(n) =

n∑
i=1

ari−1 = a+ ar + ar2 + · · ·+ arn−1

rS(n) =

n∑
i=1

ari = ar + ar2 + ar3 + · · ·+ arn

⇒ S(n)− rS(n) = a− arn ⇒

S(n) = a

(
1− rn

1− r

)
lim
n→∞

S(n) =
a

1− r
, |r| < 1

6 / 97

Visualization of Geometric Series

S(n) =
1

2
+

1

4
+ . . .

S(n) = 1 +
1

2
+

1

4
+

1

8
+ . . .

7 / 97

Applications of Geometric Sequence

Geometric Series are among the simplest examples of infinite series
with finite sums (although not all of them have this property).

Geometric series are used throughout mathematics, have important
applications in physics, engineering, biology, economics, computer
science, queueing theory, and finance.

Repeating decimals (e.g., 0.77777 · · ·) is rational
Fractal geometry
Zeno’s paradoxes
Economics: the present value of an annuity
number of total Bitcoins ≤ 2.1× 108

8 / 97

Harmonic Sequence

Harmonic Sequence (whose inverse forms an arithmetic sequence)

1,
1

2
, . . . ,

1

n

ai =
1

i

Figure: Pythagoras

9 / 97

Calculation of Harmonic Series: Integral Test

S(n) = Θ(lnn)

Lower bound

S(n) =
n∑

i=1

1

i
>

∫ n+1

i=1

1

x
dx = ln(n+ 1)

Upper bound

S(n) =

n∑
i=1

1

i
= 1 +

(
1

2
+ · · ·+ 1

n

)
< 1 +

∫ n

i=1

1

x
dx = lnn+ 1

10 / 97

Calculation of Harmonic Series: Integral Test

S(n) = Θ(lnn)

Lower bound

S(n) =

n∑
i=1

1

i
>

∫ n+1

i=1

1

x
dx = ln(n+ 1)

Upper bound

S(n) =

n∑
i=1

1

i
= 1 +

(
1

2
+ · · ·+ 1

n

)
< 1 +

∫ n

i=1

1

x
dx = lnn+ 1

10 / 97

Calculation of Harmonic Series: Integral Test

S(n) = Θ(lnn)

Lower bound

S(n) =

n∑
i=1

1

i
>

∫ n+1

i=1

1

x
dx = ln(n+ 1)

Upper bound

S(n) =

n∑
i=1

1

i
= 1 +

(
1

2
+ · · ·+ 1

n

)
< 1 +

∫ n

i=1

1

x
dx = lnn+ 1

10 / 97

Interesting Properties of These Sequences

The middle term is the “mean” of its two neighbors

arithmetic sequences

arithmetic mean:ai+1 =
ai + ai+2

2

geometric sequences

geometric mean:ai+1 =
√
ai · ai+2

harmonic sequences

harmonic mean:ai+1 =
2

1
ai

+ 1
ai+2

11 / 97

Interesting Properties of These Sequences

The middle term is the “mean” of its two neighbors
arithmetic sequences

arithmetic mean:ai+1 =
ai + ai+2

2

geometric sequences

geometric mean:ai+1 =
√
ai · ai+2

harmonic sequences

harmonic mean:ai+1 =
2

1
ai

+ 1
ai+2

11 / 97

Interesting Properties of These Sequences

The middle term is the “mean” of its two neighbors
arithmetic sequences

arithmetic mean:ai+1 =
ai + ai+2

2

geometric sequences

geometric mean:ai+1 =
√
ai · ai+2

harmonic sequences

harmonic mean:ai+1 =
2

1
ai

+ 1
ai+2

11 / 97

Interesting Properties of These Sequences

The middle term is the “mean” of its two neighbors
arithmetic sequences

arithmetic mean:ai+1 =
ai + ai+2

2

geometric sequences

geometric mean:ai+1 =
√
ai · ai+2

harmonic sequences

harmonic mean:ai+1 =
2

1
ai

+ 1
ai+2

11 / 97

Exact Series Summation

n∑
i=1

i2i−1 =

n∑
i=1

i(2i − 2i−1) //split terms

=

n∑
i=1

i2i −
n∑

i=1

i2i−1

=

n∑
i=1

i2i −
n−1∑
i=0

(i+ 1)2i //substitute subscripts

=
n∑

i=1

i2i −
n−1∑
i=0

i2i −
n−1∑
i=0

2i //split terms

= n2n − (2n − 1) = (n− 1)2n + 1 //geometric series

12 / 97

Approximate Series Summation

Amplification method

1
∑n

i=1 ai ≤ namax (coarse)

2 Assume ∃ 0 < r < 1, s.t. ∀k ≥ 0 the inequality ai+1/ai ≤ r
holds, we can amplify them to geometric series

n∑
i=0

ai ≤
n∑

i=0

a0r
i = a0

1− rn+1

1− r

13 / 97

Example of Amplification Method

Estimate the upper bound of
∑n

i=1
i
3i

Solution.

ai =
i

3i
, ai+1 =

i+ 1

3i+1
⇒

ai+1

ai
=

1

3

i+ 1

i
≤ 2

3

Apply the amplification method, we have:
n∑

i=1

i

3i
<

∞∑
i=1

1

3

(
2

3

)i−1

=
1

3

1

1− 2
3

= 1

14 / 97

Binary Search Algorithm

Algorithm 1: BinarySearch(A, l, r, x)
Input: A[l, r], target element x
Output: j

1: l← 1, r ← n;
2: while l ≤ r do
3: m← ⌊(l + r)/2⌋;
4: if A[m] = x then return m; //x is the median
5: else if A[m] > x then r ← m− 1;
6: else l← m+ 1;
7: end
8: return 0

15 / 97

Demo of Binary Search

1 2 3 4 5 6 7

1st compare: 3.5 < 4

3.5

1 2 3 4 5 6 7

2nd compare: 3.5 > 2

3.5

1 2 3 4 5 6 7

3rd compare: 3.5 > 3

3.5

16 / 97

Input Size n

Ideal case. n = 2k − 1

Q. Why we call n = 2k − 1 as ideal case?
A. Because the size of sub-problem is still of the form 2i − 1

There are 2n+ 1 possibilities of x:
x in the array: n

x not in the array: fall into n+ 1 intervals

17 / 97

Input Size n

Ideal case. n = 2k − 1

Q. Why we call n = 2k − 1 as ideal case?

A. Because the size of sub-problem is still of the form 2i − 1

There are 2n+ 1 possibilities of x:
x in the array: n

x not in the array: fall into n+ 1 intervals

17 / 97

Input Size n

Ideal case. n = 2k − 1

Q. Why we call n = 2k − 1 as ideal case?
A. Because the size of sub-problem is still of the form 2i − 1

There are 2n+ 1 possibilities of x:
x in the array: n

x not in the array: fall into n+ 1 intervals

17 / 97

Input Size n

Ideal case. n = 2k − 1

Q. Why we call n = 2k − 1 as ideal case?
A. Because the size of sub-problem is still of the form 2i − 1

There are 2n+ 1 possibilities of x:
x in the array: n

x not in the array: fall into n+ 1 intervals

17 / 97

Number of input x that requires t times compare (n = 7, k = 3)

x

t = 1 : 1

x x

t = 2 : 2

x x x x

t = 3 : 4

for t ∈ [k − 1], # possible input elements that requires t times
compares is 2t−1

for t = k, # possible input elements that requires k times
compares is 2k−1 + (n+ 1)

18 / 97

Average-case complexity of Binary Search

Let n = 2k − 1, assume x appears at each position with the same
probability:

T (n) =
1

2n+ 1

(
k−1∑
t=1

t2t−1 + k(2k−1 + n+ 1)

)

=
1

2n+ 1

 k−1∑
t=1

t2t−1 + k(2k−1 + 2k)


=

1

2n+ 1

(
(k − 2)2k−1 + 1 + k2k + k2k−1

)
//use previous result

=
k2k − 2k + 1 + k2k

2n+ 1

=
(2k − 1)2k + 1

2k+1 − 1
≈ k − 1

2
= Θ(logn)

19 / 97

Outline

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

20 / 97

Motivation

Recursion and Iteration are two commonly used programming
paradigm

Common: Solution to a problem is obtained by combining
solutions to subproblems of smaller size.

In this case, time complexity functions can be expressed as
recurrence relations.

How to solve recurrence relations?

21 / 97

Recurrence Relation

Definition 1 (Recurrence Relation)
Let a0, a1, . . . , an be a sequence, shorthand as {an}. A recurrence
relation defines each term of a sequence using preceding term(s),
and always state the initial term of the sequence.

Recurrence relation captures the dependence of a term to its
preceding terms.

Solution. Given recurrence relation for a sequence {an} together
with some initial values, compute the general term formula of an.

general term formula: a function of n, without involvement of
other terms

22 / 97

Example of Recurrence Relation: Fibonacci Number

Fibonacci number:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Recurrence relation:
fn = fn−1 + fn−2

Initial value: f0 = 1, f1 = 1 Figure: Fibonacci

fn =
1√
5

(
1 +
√
5

2

)n+1

− 1√
5

(
1−
√
5

2

)n+1

23 / 97

The Nature of Design: the Fibonacci Number and the Golden Ratio

24 / 97

Visualizing the Golden Ratio

25 / 97

The Golden Ratio is Everywhere (Plant)

26 / 97

The Golden Ratio is Everywhere (Animal)

27 / 97

The Golden Ratio is Everywhere (Animal)

Figure: 男人四十一枝花
28 / 97

The Golden Ratio is Everywhere (Art)

29 / 97

The Golden Ratio is Everywhere (Architecture)

30 / 97

The Golden Ratio is Everywhere (Typography)

31 / 97

The Golden Ratio is Everywhere (Sizing/Cropping Images)

32 / 97

The Golden Ratio is Everywhere (Shapes and Symbols)

33 / 97

Next, we introduce three methods for solving recurrence relation.

34 / 97

Outline

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

35 / 97

Steps of Direct Iteration

When the recurrence relation is simple, i.e., F (n) only relies on
F (n− 1), we use direct iteration.

1 Continuously substitute the “right part” of formula with the
“right right part”

2 After each substitution, a new term emerged in the series as n
decreases

3 Stop substitution until reaching the initial values
4 Calculate the series with the initial values
5 Use mathematical induction to check the correctness of the

solution
Remark. Mathematical induction is useful for testing if your guess
is correct. When the correctness is evident, it is not necessary.

36 / 97

Example: Hanoi Tower Problem

Origin. When creating the world, Brahma also built three
diamond rods and 64 golden disks of different sizes. At the
beginning, the disks place in ascending order of size on one rod,
the smallest at the top, thus making a conical shape. Brahmin
priests have been moving these disks from one rod to another
rod in accordance with the immutable rules of Brahma since
that time. When the last move is completed, the world will
end.

37 / 97

Problem as a Puzzle

Problem Abstract. There are three rods (labeled as A,B,C) with
n of disks of different sizes. At the beginning, the disks in a neat
stack in ascending order of size on rod A. The objective of figure
out the minimum number of moves T (n) required to move the
entire stack to rod C, obeying the following rules:

Only one disk can be moved at a time.
Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack or on an empty
rod.
No larger disk may be placed on top of a smaller disk.

Example. n = 1, T (1) = 1; n = 2, T (2) = 3; n = 3, T (3) = 7;

general form T (n) =?

38 / 97

Problem as a Puzzle

Problem Abstract. There are three rods (labeled as A,B,C) with
n of disks of different sizes. At the beginning, the disks in a neat
stack in ascending order of size on rod A. The objective of figure
out the minimum number of moves T (n) required to move the
entire stack to rod C, obeying the following rules:

Only one disk can be moved at a time.
Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack or on an empty
rod.
No larger disk may be placed on top of a smaller disk.

Example. n = 1, T (1) = 1; n = 2, T (2) = 3; n = 3, T (3) = 7;

general form T (n) =?

38 / 97

Problem as a Puzzle

Problem Abstract. There are three rods (labeled as A,B,C) with
n of disks of different sizes. At the beginning, the disks in a neat
stack in ascending order of size on rod A. The objective of figure
out the minimum number of moves T (n) required to move the
entire stack to rod C, obeying the following rules:

Only one disk can be moved at a time.
Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack or on an empty
rod.
No larger disk may be placed on top of a smaller disk.

Example. n = 1, T (1) = 1; n = 2, T (2) = 3; n = 3, T (3) = 7;

general form T (n) =?

38 / 97

Recursive Algorithm for Hanoi Tower

Algorithm 2: Hanoi(A,C, n) // move n disks from A to C

Input: A(n), B(0), C(0)
Output: A(0), B(0), C(n)

1: if n = 1 then move (A,C); //one disk from A to C
2: else
3: Hanoi(A,B, n− 1) // use C as swap tower;
4: move (A,C);
5: Hanoi(B,C, n− 1) // use A as swap tower;
6: end

Let T (n) be the number of moves required to move n disks
T (n) = 2T (n− 1) + 1

T (1) = 1

39 / 97

Complexity Analysis: Direct Iteration

T (n) = 2T (n− 1) + 1
T (1) = 1

}
⇒ T (n) = 2n − 1

T (n) = 2T (n− 1) + 1

= 2(2T (n− 2) + 1) + 1

= 22T (n− 2) + 2 + 1

= . . .

= 2n−1T (1) + 2n−2 + · · ·+ 2 + 1//reaching the initial terms

= 2n−1 · 1 + 2n−1 − 1//substitute with initial values
= 2n − 1

40 / 97

Complexity Analysis: Direct Iteration

T (n) = 2T (n− 1) + 1
T (1) = 1

}
⇒ T (n) = 2n − 1

T (n) = 2T (n− 1) + 1

= 2(2T (n− 2) + 1) + 1

= 22T (n− 2) + 2 + 1

= . . .

= 2n−1T (1) + 2n−2 + · · ·+ 2 + 1//reaching the initial terms

= 2n−1 · 1 + 2n−1 − 1//substitute with initial values
= 2n − 1

40 / 97

More about Hanoi Tower

Is there a better algorithm?

No! Tower of Hanoi is an intractable problem, no polynomial time
algorithm is known.

Q. 1 move/s, how many times needed to move 64 disks?
A. 500 billion years! Bad news for algorithm but good news to the
world!

41 / 97

More about Hanoi Tower

Is there a better algorithm?
No! Tower of Hanoi is an intractable problem, no polynomial time
algorithm is known.

Q. 1 move/s, how many times needed to move 64 disks?
A. 500 billion years! Bad news for algorithm but good news to the
world!

41 / 97

More about Hanoi Tower

Is there a better algorithm?
No! Tower of Hanoi is an intractable problem, no polynomial time
algorithm is known.

Q. 1 move/s, how many times needed to move 64 disks?

A. 500 billion years! Bad news for algorithm but good news to the
world!

41 / 97

More about Hanoi Tower

Is there a better algorithm?
No! Tower of Hanoi is an intractable problem, no polynomial time
algorithm is known.

Q. 1 move/s, how many times needed to move 64 disks?
A. 500 billion years! Bad news for algorithm but good news to the
world!

41 / 97

Example: Iterated Algorithm for Insertion Sort
Algorithm 3: InsertionSort(A,n)

Input: unsorted A[n]
Output: A[n] in ascending order

1: for j ← 2 to n do
2: x← A[j];
3: i← j − 1 //insert A[j] to A[1 . . . j − 1];
4: while i > 0 and x < A[i] do
5: A[i+ 1]← A[i];
6: i← i− 1;
7: end
8: A[i+ 1]← x;
9: end

≤ x > x x

i
. . .

≤ x x > x . . .
42 / 97

Worse-case Complexity

Basic computer step. element compare
Input size. n

W (n) = W (n− 1) + (n− 1)
W (1) = 0

}
⇒W (n) = n(n− 1)/2

When inserting the i-th element, algorithm compares it with
the first i− 1 sorted elements; the maximum number of
compare is i− 1.

43 / 97

Solve Recurrence Relation by Direct Iteration

W (n) = W (n− 1) + n− 1

= (W (n− 2) + n− 2) + n− 1

= W (n− 2) + n− 2 + n− 1

= . . .

= W (1) + 1 + 2 + · · ·+ (n− 2) + (n− 1)//reach the initial term

= 0 + 1 + 2 + · · ·+ (n− 2) + (n− 1)//substitute with initial value

= n(n− 1)/2

44 / 97

Mathematical Induction (date back to 370 BC, Plato’s Parmenides)

Mathematical induction is a mathematical proof technique ⇒
prove that a property P (n) holds for every natural number n ∈ N.

Mathematical induction proves that we can climb as high as
we like on a ladder, by proving that we can climb onto the
bottom rung (the basis) and that from each rung we can climb
up to the next one (the step). — Concrete Mathematics

45 / 97

Template of Mathematical Induction
The method of induction requires two facts to be proved.
Induction basis: Prove the property holds for number 0.
Induction step

1 Prove that if the property holds for one natural number n,
then it holds for the next natural number n+ 1

P (0) = 1

∀n, P (n) = 1⇒ P (n+ 1) = 1

n = 0, P (0)⇒ P (1);n = 1, P (1)⇒ P (2) . . .

2 Prove that the the property holds for all natural number
k < n, then it also holds for n.

P (0) = 1

∀k < n, P (k) = 1⇒ P (n) = 1

n = 1, P (0) = 1⇒ P (1) = 1;

n = 2, P (0) = 1 ∧ P (1) = 1⇒ P (2) = 1 . . .
46 / 97

Comparsion Between Two Types of Mathematics Induction

Induction basis is same: P (0) = 1

Induction step is different
Logic reasoning:

1 Type 1 induction: P (0) = 1⇒ P (1) = 1⇒ P (2) = 1

2 Type 2 induction:
P (0) = 1⇒ P (0) = 1 ∧ P (1) = 1⇒ P (0) = 1 ∧ P (1) =
1 ∧ P (2) = 1⇒ P (0) = 1 ∧ P (1) = 1 ∧ P (2) = 1 ∧ P (3) = 1

Think. The intutions are same, when to apply which?
Type 1 (loose coupling): the property of next number only
depends on its nearest preceding
Type 2 (tight coupling): the property of next number depends
on all its precedings

47 / 97

Remarks on Mathematic Induction

These two steps establish the property P (n) = 1 for every natural
number n = 0, 1, 2, 3.

The base case does not necessarily begin with n = 0. It can
begin with any natural number n0, establishing the truth of
P (n) = 1 holds for all n ≥ n0.

The method can be extended to structural induction ⇒prove
statements about more general well-founded structures, such
as trees (widely used in mathematical logic and computer
science).

48 / 97

Remarks on Mathematic Induction

These two steps establish the property P (n) = 1 for every natural
number n = 0, 1, 2, 3.

The base case does not necessarily begin with n = 0. It can
begin with any natural number n0, establishing the truth of
P (n) = 1 holds for all n ≥ n0.

The method can be extended to structural induction ⇒prove
statements about more general well-founded structures, such
as trees (widely used in mathematical logic and computer
science).

48 / 97

Remarks on Mathematic Induction

These two steps establish the property P (n) = 1 for every natural
number n = 0, 1, 2, 3.

The base case does not necessarily begin with n = 0. It can
begin with any natural number n0, establishing the truth of
P (n) = 1 holds for all n ≥ n0.

The method can be extended to structural induction ⇒prove
statements about more general well-founded structures, such
as trees (widely used in mathematical logic and computer
science).

48 / 97

Verify Correctness of Solution: Mathematical Induction

Proposition. W (n) = n(n− 1)/2 is the general term formula for
recurrence relation{

W (n) = W (n− 1) + n− 1
W (1) = 0

Method: Mathematical Induction
1 Basis: n = 1, W (1) = 1× (1− 1)/2 = 0

2 Induction step: P (n) = 1⇒ P (n+ 1) = 1:

W (n+ 1) = W (n) + n

= n(n− 1)/2 + n //premise

= n((n− 1)/2 + 1) = n(n+ 1)/2

49 / 97

Verify Correctness of Solution: Mathematical Induction

Proposition. W (n) = n(n− 1)/2 is the general term formula for
recurrence relation{

W (n) = W (n− 1) + n− 1
W (1) = 0

Method: Mathematical Induction
1 Basis: n = 1, W (1) = 1× (1− 1)/2 = 0

2 Induction step: P (n) = 1⇒ P (n+ 1) = 1:

W (n+ 1) = W (n) + n

= n(n− 1)/2 + n //premise

= n((n− 1)/2 + 1) = n(n+ 1)/2

49 / 97

Variant of Direct Iteration: Substitution-then-Iteration

When n itself is a function of another variable, say, k, and k
decreases 1 after each iteration, we first substitute n by the
function of k, then apply the iteration approach over k.

1 Transform the recursive formula about n to recursive formula
about k

2 Iterate over k

3 Transform the general term formula about k back to general
term formula about n

50 / 97

MergeSort Algorithm

Algorithm 4: MergeSort(A,n)
Input: unsorted A[n]
Output: sorted A[n] in ascending order

1: l← 1, r ← n;
2: if l < r then
3: k ← ⌊(l + r)/2⌋;
4: MergeSort(A, l, k);
5: MergeSort(A, k + 1, r);
6: Merge(A, p, k, r)
7: end

51 / 97

Example of Substitution-and-Iteration (1/2)

Assume n = 2k, the recurrence relation is:{
W (n) = 2W (n/2) + n− 1

W (1) = 0

n− 1 is the cost of merge
Substitution: n→ 2k{

W (2k) = 2W (2k−1) + 2k − 1
W (20 = 1) = 0

52 / 97

Example of Substitution-and-Iteration (2/2)

W (n)

= 2W (2k−1) + 2k − 1 //substitute and iterate on k

= 2(2W (2k−2) + 2k−1 − 1) + 2k − 1 //1st round iteration
= 22W (2k−2) + 2k − 2 + 2k − 1

//2nd round iteration
= 22(2W (2k−3) + 2k−2 − 1) + 2k − 2 + 2k − 1

= . . .

= 2kW (20 = 1) + k2k − (2k−1 + 2k−2 + · · ·+ 2 + 1)

= 0 + k2k − 2k + 1

= n logn− n+ 1 //substitute back

53 / 97

Outline

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

54 / 97

Simplification-then-Iteration

Motivation

Basic approach for solving recurrence relation is iteration

When the original recurrence relation is complex, we need
simplification

transform high order equation to one order equation (reduce
dependence), then substitute

55 / 97

Example of QuickSort

Recap of QuickSort
Suppose the elements in A[n] are distinct, set l← 1, r ← n,
partition A[l . . . r] with the first element A[1] = x, such that

elements less than x are stored in A[l . . . k − 1]

elements greater than x are stored in A[k + 1 . . . r]

A[1] is placed in A[k]

sort A[l . . . k − 1] and A[k + 1 . . . r] recursively
Overall complexity.

complexity of subproblems
complexity of partition

56 / 97

Input and Subproblem Size

According to the final position of the first element x in the
resulting sorted array, we can break input to n cases

final position of x size of subproblem-1 size of subproblem-2
1 0 n− 1

2 1 n− 2

3 2 n− 3

.

n− 1 n− 2 1

n n− 1 0

For each input, the number of compares required for partition
is exactly n− 1 (think why?)

57 / 97

Summation of Complexity

T (0) + T (n− 1) + n− 1

T (1) + T (n− 2) + n− 1

T (2) + T (n− 3) + n− 1

. . .

T (n− 1) + T (0) + n− 1

Summation: 2(T (1) + · · ·+ T (n− 1)) + n(n− 1)

58 / 97

Average Complexity of QuickSort

Assumption. The first element x finally appears at each position
with equal probability:

T (n) =
2

n

n−1∑
i=1

T (i) +O(n), n ≥ 2

T (1) = 0

T (0) = 0

Observation and Idea
The recurrence relation is complex: n-th term depends on all
preceding terms ; direct iteration would be very complex
Idea: Simplify the complex equation, then iterate

59 / 97

Simplification via Subtraction

Rewrite and iterate once to obtain two recurrence relations, then
try to simplify the terms of the right side.

T (n) =
2

n

n−1∑
i=1

T (i) + n− 1

nT (n) = 2

n−1∑
i=1

T (i) + n(n− 1)

(n− 1)T (n− 1) = 2

n−2∑
i=1

T (i) + (n− 1)(n− 2)

60 / 97

Simplification via Subtraction

Subtraction

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 2(n− 1)

Simplification

nT (n) = (n+ 1)T (n− 1) + Θ(n)

Rewrite

T (n)

n+ 1
=

T (n− 1)

n
+

Θ(n)

n(n+ 1)
=

T (n− 1)

n
+

Θ(1)

n+ 1

61 / 97

Iteration

T (n)

n+ 1
=

T (n− 1)

n
+

Θ(1)

n+ 1
= . . .

= Θ(1)

(
1

n+ 1
+

1

n
+ · · ·+ 1

3

)
+

T (1)

2
//reach the initial term

= Θ(1)

(
1

n+ 1
+

1

n
+ · · ·+ 1

3

)
//substitute with initial value

= Θ(lnn)

T (n) = Θ(n logn)

62 / 97

Outline

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

63 / 97

Concept of Recursion Tree

When F (n) relies on several non-consecutive preceding terms, we
could try solving the recurrence relation using recursion tree.

Recursion tree is the model of recursive computation, also the
iteration of recurrence relation

The generation of recursion tree is same as that of recursion
process

The nodes on the recursion tree is exactly the terms in the
series of recursion

The summation of all nodes (including the internal and leaf
nodes) on the recursion tree is the solution to the recurrence
relation

64 / 97

Representation of Iteration in Recursion Tree

Recursion tree is the model of recursion ⇒ closely related to
solving for recurrence relation
Assume the recurrence relation is as below:

T (n) = T (n1) + · · ·+ T (nt) + f(n), |n1|, . . . , |nt| < |m|

T (n1), . . . , T (nt): function items
f(n): dividing cost + merging cost

How to represent T (n) on the recursion tree?

65 / 97

Visualization of Recursion Tree

T (n)

f(n)

T (n1) T (n2) T (n3) . . .
. . .

T (nt)

root node is the combine and divide cost
each leaf node is a function term

summation of
all nodes

1st recursion

66 / 97

Example of 2-Level Recursion Tree

Recurrence relation for MergeSort
T (n) = 2T (n/2) + (n− 1)

T (2) = 1
T (1) = 0

(n− 1)

T (n/2) T (n/2)

67 / 97

The Generation Rules of Recursion Tree

1 At the very beginning, there is only the root node in the
recursion tree, whose value is T (n)

2 Repeat the following steps:
represent the function term T (n) in the leaf node as a 2-level
subtree
replace the leaf node with this subtree

3 Continue the generation of recursion tree until there is no
function term in the tree.

Reaching the leaf nodes — initial values

68 / 97

Demo of Balanced Recursion Tree Generation

n− 1

T (n/2) T (n/2)

n− 1

n/2− 1 n/2− 1

T (n/4) T (n/4) T (n/4) T (n/4)

2nd iteration

69 / 97

The Whole Recursion Tree

n− 1

n− 2

n− 4

n− 2k−1

n− 1

n
2 − 1 n

2 − 1

n
4 − 1 n

4 − 1 n
4 − 1 n

4 − 1

.

1 1.

0 0 0 0.

70 / 97

Calculate the Sum of Recursion Tree (balanced setting)

{
T (n) = 2T (n/2) + n− 1, n = 2k

T (1) = 0

T (n) =

0-level︷ ︸︸ ︷
(n− 1)+

1-level︷ ︸︸ ︷
(n− 2)+ · · ·+

(k−1)-level︷ ︸︸ ︷
(n− 2k−1)

= kn− (2k − 1) //k = logn
= n logn− n+ 1

71 / 97

Application of Recursion Tree (unbalanced setting)
Compute the general term formula of

T (n) = T (n/3) + T (2n/3) + n

n

n

n

O(n)

n

n
3

2n
3

n
9

2n
9

2n
9

4n
9

.

1

The rates that different routes reach the initial value are different
the left route is fastest – estimate the lower bound
the right route is slowest – estimate the upper bound

72 / 97

Calculate the Sum of Recursion Tree (unbalanced setting)

Recurrence relation: T (n) = T (n/3) + T (2n/3) + n

The depth of recursion tree is k, the sum of each level is O(n)

Estimate the longest route to calculate for the upper bound

n

(
2

3

)k

= 1⇒
(
3

2

)k

= n⇒ k = log3/2 n

T (n) < log3/2 n× n = O(n logn)

Estimate the shortest route to calculate the lower bound

T (n) > log3 n× n = Ω(n logn)

Putting all the above together, T (n) = Θ(n logn)

73 / 97

Remark

For the sake of simplicity, the leaf nodes that represent initial
values are not included in the summation.

The initial values usually cannot be represented by f(n).

The initial values are usually constants, such as 0 or 1, and
thus they can be easily calculated separately.

74 / 97

Outline

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

75 / 97

Application of Master Theorem

Solving recurrence relation

T (n) = aT (n/b) + f(n)

a: the number of subproblems after dividing
n/b: the size of subproblems
f(n): the cost of dividing and merging subproblems

Examples
binary search: T (n) = T (n/2) + 1

merge sort: T (n) = 2T (n/2) + n− 1

76 / 97

Master Theorem
Let a ≥ 1, b ≥ 1 be constants, T (n) and f(n) be functions, and

T (n) = aT (n/b) + f(n)

1 if ∃ε > 0 s.t. f(n) = O(n(logb a)−ε), then:

T (n) = Θ(nlogb a)

2 if f(n) = Θ(nlogb a), then:

T (n) = Θ(nlogb a logn)

3 if ∃ε > 0 s.t. f(n) = Ω(n(logb a)+ε), and ∃r < 1 s.t. for all n
(can be relaxed to for sufficiently large n) the inequality
af(n/b) ≤ rf(n) holds, then:

T (n) = Θ(f(n))

77 / 97

How to prove the master theorem?

78 / 97

Direct Iteration

T (n) = aT (n/b) + f(n)

For the sake of convenience, let n = bk

T (n) = aT
(n
b

)
+ f(n)

= a
(
aT
(n

b2

)
+ f

(n
b

))
+ f(n)

= a2T
(n

b2

)
+ af

(n
b

)
+ f(n)

= . . .

79 / 97

Result of Iteration

= akT
(n

bk

)
+ ak−1f

(n

bk−1

)
+ · · ·+ af

(n
b

)
+ f(n)

= akT (1) +

k−1∑
j=0

ajf
(n
bj

)
//reach the initial term

= c1n
logb a +

k−1∑
j=0

ajf
(n
bj

)
//assume T (1) = c1

k = logb n = logb a · loga n

the first term is the total costs of all base subproblems
the second term is the total costs of all dividing and merging
steps

80 / 97

Corresponding Recursion Tree

branching factor a

· · · · · ·

......

depth
logb n

width alogb n = nlogb a

n

n/b

n/b2

1

81 / 97

Explaining the Meaning of Recursion Tree

a: branching factor
b: the size of subproblems decreases by a factor of b with each
level of recursion
k = logb n: reaches the base case after k levels, the height of
the recursion tree

the jth level of the tree is made up of aj subproblems, each
of size n/bj

82 / 97

Case 1

∃ε > 0 s.t. f(n) = O(n(logb a)−ε)

T (n) = c1n
logb a +

k−1∑
j=0

ajf
(n
bj

)

= c1n
logb a +O

(logb n)−1∑
j=0

aj
(n
bj

)(logb a)−ε

 //substitute with premise

= c1n
logb a +O

n(logb a)−ε

(logb n)−1∑
j=0

aj(
b(logb a)−ε

)j


//move sum irrelevant terms outside

83 / 97

Case 1: Continue to Simplify

1(
blogb a−ε

)j =
bεj(

blogb a
)j =

bεj

aj

= c1n
logb a +O

n(logb a)−ε

logb n−1∑
j=0

aj(
b(logb a)−ε

)j
 //simplify

= c1n
logb a +O

n(logb a)−ε

logb n−1∑
j=0

(bε)j

 //geometric series

= c1n
logb a +O

(
n(logb a)−ε b

ε logb n − 1

bε − 1

)
//ignore the constants

= c1n
logb a +O

(
n(logb a)−εnε

)
= Θ(nlogb a)

84 / 97

Case 2

f(n) = Θ(nlogb a)

T (n)

= c1n
logb a +

logb n−1∑
j=0

ajf
(n
bj

)

= c1n
logb a +Θ

(logb n)−1∑
j=0

aj
(n
bj

)logb a
 //substitute with premise

//move sum irrelevant terms outside

= c1n
logb a +Θ

nlogb a
(logb n)−1∑

j=0

aj

aj


= c1n

logb a +Θ(nlogb a logb n) = Θ(nlogb a logn)

85 / 97

Case 3

∃ε > 0, f(n) = Ω(n(logb a)+ε) (1)
af(n/b) ≤ rf(n) (2)

Repeatedly apply Condition (2)

ajf
(n
bj

)
≤ aj−1rf

(n

bj−1

)
≤ · · · ≤ rjf(n)

T (n) = c1n
logb a +

(logb n)−1∑
j=0

ajf
(n
bj

)

= c1n
logb a + f(n) +

(logb n)−1∑
j=1

ajf
(n
bj

)

86 / 97

Case 3 (continue)

T (n) ≤ c1n
logb a + f(n) +

(logb n)−2∑
j=1

rjf(n)

= c1n
logb a + f(n) + f(n)r

1− r(logb n)−2

1− r
//geometric series: r < 1

= c1n
logb a +Θ(f(n))

Condition 1 ⇒ order(f(n)) ≥ order(nlogb a)

Therefore, we have:
T (n) = Θ(f(n))

Recap: Condition 2 is used to prove the coefficient of f(n) is
upper bounded by a constant.

87 / 97

Simplified Form of Master Theorem

Define h(n) = nlogb a, we re-state master theorem as below:

T (n) =


Θ(h(n)) if f(n) = o(h(n))

Θ(h(n) logn) if f(n) = Θ(h(n))

Θ(f(n)) if f(n) = ω(h(n))

∧∃ r < 1 s.t. af(n/b) < rf(n)

88 / 97

Outline

1 Sequences and Series Summation

2 Recurrence Relation and Algorithm Analysis
Approach 1: Direct Iteration
Approach 2: Simplification-then-Iteration
Approach 3: Recursion Tree

3 Master Theorem and Its Proof

4 Application of Master Theorem

89 / 97

Example 1 of Solving Recurrence Relation

Compute the general term formula of recurrence relation:

T (n) = 9T (n/3) + n

Applying the master theorem
a = 9, b = 3, h(n) = n2, ε = 1;
f(n) = n, nlog3 9 = n2, f(n) = O(nlog3 9−1) = o(n2)

Master theorem (case 1) ⇒ T (n) = Θ(n2)

90 / 97

Example 2 of Solving Recurrence Relation

Compute the general term formula of recurrence relation:

T (n) = T (2n/3) + 1

Applying the master theorem
a = 1, b = 3/2, h(n) = nlogb a = n0 = 1;
f(n) = 1, nlog3/2 1 = n0 = 1, f(n) = Θ(1)

Master theorem (case 2) ⇒ T (n) = Θ(logn)

91 / 97

Example 3 of Solving Recurrence Relation

Compute the general term formula of recurrence relation:

T (n) = 3T (n/4) + n logn

Applying the master theorem
a = 3, b = 4, h(n) = nlog4 3;
f(n) = n logn = Ω(nlog4 3+ε) ≈ Ω(n0.793+ε), choose ε = 0.2

Check addition condition af(n/b) ≤ rf(n) holds for all n.
Test f(n) = n logn⇒ af(n/b) = 3(n/4) log(n/4) ≤ rn logn
holds for some r < 1.
Choose r = 3/4 < 1, this inequality holds for all n.

Master theorem (case 3) ⇒ T (n) = Θ(f(n)) = Θ(n logn)

92 / 97

Complexity Analysis of Recursive Algorithms

Binary search. T (n) = T (n/2) + 1, T (1) = 1

a = 1, b = 2, h(n) = nlog2 1 = 1, f(n) = 1

Master theorem (case 2) ⇒ T (n) = Θ(logn)

Merge sort. T (n) = 2T (n/2) + (n− 1), T (1) = 0

a = 2, b = 2, h(n) = nlog2 2 = n, f(n) = n− 1

Master theorem (case 2) ⇒ T (n) = Θ(n logn)

93 / 97

Cases that Master Theorem is not Applicable

Example. Compute the general term formula of

T (n) = 2T (n/2) + n logn

Apply master theorem. a = b = 2, h(n) = nlogb a = n,
f(n) = n logn

Only case 3 is possible, but ∄ r < 1 to make af(n/b) ≤ rf(n)
holds for all n.

af(n/b)− rf(n) = 2(n/2) log(n/2)− rn logn
= n(logn− 1)− rn logn
= (1− r)n logn− n > 0 if r < 1

94 / 97

Solving via Recursion Tree

n logn

n(logn− 1)

n(logn− 2)

n(logn− k + 1)

n logn

n(logn−1)
2

n(logn−1)
2

n(logn−2)
4

n(logn−2)
4

n(logn−2)
4

n(logn−2)
4

.

95 / 97

Summation

T (n) = n logn+ n(logn− 1) + n(logn− 2)

+ · · ·+ n(logn− k + 1)

= (n logn) logn− n(1 + 2 + · · ·+ k − 1)

= n log2 n− nk(k − 1)/2 //substitute with k = logn
= Θ(n log2 n)

96 / 97

Summary

Classical sequences and series

Complexity analysis: solving recurrence relation
Direct Iteration
Simplification-then-Iteration
Recursion Tree

Master theorem and its proof

Application of Master Theorem

97 / 97

	Sequences and Series Summation
	Recurrence Relation and Algorithm Analysis
	Approach 1: Direct Iteration
	Approach 2: Simplification-then-Iteration
	Approach 3: Recursion Tree

	Master Theorem and Its Proof
	Application of Master Theorem

